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We study finite-size effects on the dynamics of a one-dimensional zero-range process which shows a phase
transition from a low-density disordered phase to a high-density condensed phase. The current fluctuations in
the steady state show striking differences in the two phases. In the disordered phase, the variance of the
integrated current shows damped oscillations in time due to the motion of fluctuations around the ring as a
dissipating kinematic wave. In the condensed phase, this wave cannot propagate through the condensate, and
the dynamics is dominated by the long-time relocation of the condensate from site to site.
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The dynamics of fluctuations in simple nonequilibrium
steady states of interacting particle systems has been studied
extensively in recent years, and a fairly good understanding
of the physical processes involved has been achieved in in-
finite systems �1�. Studies of these fluctuations in a finite
system show a strong imprint of the nonequilibrium charac-
ter, which combines with size effects to bring in interesting
dynamical phenomena �2�. Many of these systems often ex-
hibit a nonequilibrium phase transition in the steady state,
from a disordered to an ordered phase, as one tunes an ex-
ternal parameter such as the density. This raises the natural
question: How is the dynamics of fluctuations in the steady
state affected as the system passes through a nonequilibrium
phase transition? In this paper, we address this issue within
the ambit of a paradigmatic model, the zero-range process
�ZRP� �3,4�, and show that there are strong differences in the
dynamical properties arising from very different physical
processes in the two phases.

The ZRP involves biased hopping of particles on a peri-
odic lattice with a rate that depends on the occupancy at the
departure site. At long times, the system reaches a nonequi-
librium steady state. For certain classes of the hop rates, as
the particle density crosses a critical threshold, there is a
continuous phase transition from a disordered phase with
uniform average density to a condensed phase where a finite
fraction of particles �the “condensate”� accumulates on a
single site �4�. The ZRP applies to a wide variety of physical
systems ranging from traffic flow �5� to shaken granular
gases �6�; in addition, it was invoked to provide a criterion
for phase separation in one-dimensional driven systems �7�.

Recent work on the ZRP has dealt with the relaxation of
an initial homogeneous density distribution toward the con-
densed phase �8�. By contrast, here we are interested in the
dynamics of density fluctuations in the steady state in both
the disordered and the condensed phases. We explore the
dynamics by monitoring the variance of the integrated par-
ticle current in Monte Carlo simulations and supplement our
findings by analyzing the survival probability distribution of
the largest mass in the system. The relevant time scales in the
behavior of fluctuations in the two phases and the physical
effects underlying them are summarized below.

In Fig. 1, we show schematically the behavior of the vari-
ance of the integrated current as a function of time in differ-
ent phases. In all the phases, at short times, the integrated

current is Poisson distributed, implying that the variance
grows linearly in time, a behavior which holds for all times
in an infinite system. In a finite system, in the disordered
phase and at criticality, the variance shows oscillations at
times proportional to the system size L. This results from
kinematic waves transporting density fluctuations around the
system with a well-defined speed. At longer times ��L3/2�,
the wave decays, and then the variance increases linearly
with time with a small slope that decreases with increasing
system size. In the condensed phase, however, the kinematic
wave cannot pass through the condensate; thus, fluctuations
do not circulate around. The initial linear behavior continues
until, after a characteristic time which grows as a power of
the system size, the condensate relocates itself. This results
in the variance showing a linear rise in time with a much
larger slope than at early times. Subsequently, after the con-
densate has relocated to another site, the slope of the linear
rise slowly approaches a size-dependent constant.

We now turn to a derivation of these properties. The ZRP
involves N particles of unit mass on a ring of size L with
arbitrary occupancy allowed at any site. A particle hops out
of a randomly selected site i with occupancy ni with a speci-
fied rate u�ni�, and goes to site �i+1�. In the thermodynamic
limit N→� ,L→� at a fixed density �=N /L, the probability
P�C� of a configuration C��ni� in the steady state, in the
grand canonical ensemble, is given by �4�
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FIG. 1. �Color online� �a� Schematic plot of the integrated cur-
rent fluctuations C�t� across a bond in the steady state of the ZRP as
a function of time t in the disordered phase ����c�, at the critical
point ��=�c�, and in the condensed phase ����c�. �b� Schematic
plot of C�t� / t as a function of t in all the phases.
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P�C� =
1

Z
	
i=1

L

vnif�ni� ,

f�n� = 
�	
l=1

n

u�l��−1

if n � 0,

1 if n = 0.
 �1�

Here, Z is the partition function and v is the fugacity. The
average mass at a site equals vF��v� /F�v�, where F�v�=1
+�n=1

� vnf�n�. Particle conservation gives a relation between
� and v, namely, �=vF��v� /F�v�. The fugacity has the maxi-
mum value vmax=u���, given by the radius of convergence
of the infinite series F�v�. The ZRP can be mapped to a
generalization of the asymmetric simple exclusion process
�ASEP� by interpreting the ZRP sites as particles in the
ASEP, while the particles at a ZRP site become holes pre-
ceding the corresponding ASEP particle �4�. The hop rate
u�n� for an ASEP particle, now a function of the headway to
the next particle, induces a long-ranged particle hopping.

Here, we consider the hop rate u�n�=1+b /n with b�2
for which the system undergoes a nonequilibrium phase tran-
sition �4�. As � crosses the critical value �c=1 / �b−2� �8�, a
low-density disordered phase with mass of O�1� at each site
evolves to a high-density condensed phase where a macro-
scopic collection of particles of average mass ��−�c�L con-
denses onto a randomly selected site, while the remaining
sites have the average mass �c.

In the steady state, the mean current of particles between
every pair of neighboring sites is the same. In the thermody-
namic limit, the mean current is J=�n=1

� u�n�vnf�n� /F�v�=v.
It increases with the density �, attaining its maximum value
vmax=u���=1 at �c and remaining pinned to this value in the
condensed phase. To address the dynamics of density fluc-
tuations, we examine the fluctuations in the integrated par-
ticle current across any bond in the steady state. The large
deviation function of the integrated current has been studied
for the ZRP with open boundaries in �9�. For our purpose, we
monitor the variance C�i , t� of the integrated current H�i , t�
which counts the total number of particles crossing the bond
�i , i+1� in time t. Thus, we have

C�i,t� � �H2�i,t�� − �H�i,t��2. �2�

In the equivalent ASEP, C�i , t� is a measure of tagged par-
ticle correlations, being given by the variance of the ith
tagged particle around its average displacement in time t. In
simulations, we monitor C�t�=�i=1

L C�i , t� /L and find that it
shows strong differences in behavior in the disordered and
the condensed phases, reflecting very different underlying
physical processes in the two phases.

Disordered phase. C�t� in this phase behaves similarly to
the tagged particle correlation in the ordinary ASEP, studied
recently �2�. As discussed below, there are two scales T1
�L, set by the circulation time of a kinematic wave of den-
sity fluctuations, and T2�L3/2, given by the time taken by
this wave to decay.

�i� t�T1. Here, C�t� grows linearly in time: C�t�=vt. This
follows from the result that, in this time regime, H�i , t� is
Poisson distributed with intensity v over all bonds �i , i+1�.
The population at a ZRP site undergoes a time-reversible
birth-death process where a birth �particle input� occurs with
rate v, while a population of n particles undergoes a death
with rate u�n�. For a reversible birth-death process with Pois-
son inputs, Burke’s theorem implies an identical Poisson dis-
tribution of outputs �10�. Noting that the output from one site
forms the input to the next site then implies the result �11�.

�ii� T1� t�T2. In this regime, C�t� oscillates as a function
of time. In a driven system with homogeneous density � and
a density-dependent current J���, density fluctuations are
transported as a kinematic wave with speed vK=�J /�� �12�.
This wave is dissipated over a time scale �Lz, where z is the
dynamic exponent of the system. For the ZRP, z takes on the
Kardar-Parisi-Zhang �KPZ� value of 3 /2 �13�. Since z�1,
fluctuations circulate several times around a periodic system
before getting dissipated, and revisit every site after a time
L /vK. This makes the variance oscillate in time with this
period. A measure of the growth of dissipation in time is
given by the lower envelope of the oscillations, which be-
haves as t2� where �=�KPZ=1 /3 �13�.

�iii� t�T2. The time scale T2 marks the dissipation time of
an initial density profile. For times t�T2, the variance grows
diffusively: C�t��D�L�t. Matching this behavior at T2 with
that in �ii� above gives D�L��L−1/2, as for the ordinary
ASEP �14�.

Critical point. At the critical density �c, the variance be-
haves differently for values of b	3 and b�3. For b	3,
there is no moving kinematic wave �8�. Hence, the integrated
current is Poisson distributed with intensity vmax=1, imply-
ing that the variance continues to grow linearly with slope 1.
For b�3, however, the kinematic wave speed is nonzero and
the Poisson distribution for the integrated current is expected
to hold for times smaller than the return time of the kine-
matic wave. At criticality, the largest mass in the system
scales as �L1/�b−1� �15� and is insufficient to block the circu-
lation of the kinematic wave around the system. C�t� oscil-
lates in time as for ���c, with return time T1 and decay time
T2 of the kinematic wave. To find the exponent � at critical-
ity, we monitored the variance B�t� of the integrated current
by starting from an arbitrary but fixed initial configuration,
drawn from the stationary ensemble �16�. B�t� grows asymp-
totically as t2� for t�L3/2 �2�. We find that � at criticality has
the KPZ value of 1 /3, independent of b �Fig. 2�.

Condensed phase. For ���c, a finite fraction of the total
mass �the condensate� resides on one site for the character-
istic survival time Ts���−�c�b+1Lb �17�. It then relocates to
another site over the relocation time scale Tr���−�c�2L2, as
discussed below. The behavior of C�t� in this phase is best
depicted by plotting C�t� / t as a function of time, as shown
schematically in Fig. 3�a�, where the various regimes are also
marked.

�i� t�Ts: Here, C�t� / t equals 1, with a mild upward de-
viation for longer times. �ii� t�Ts: In this regime, C�t� / t
rises rapidly in time. �iii� t
Ts+Tr: Here, C�t� / t falls slowly
in time. �iv� t�Ts+Tr: Here, C�t� / t begins to approach a
size-dependent constant, as predicted by a simple model de-
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scribed later in this paper. Features �ii�, �iii�, and �iv� result
from enhanced fluctuations due to the condensate relocation.
To understand this, we need to first discuss the relocation
dynamics.

The condensate relocation occurs through exchange of
particles between two sites. On monitoring the time evolu-
tion of the largest and the second largest mass in simulation,
the following picture emerges. Let M�t� denote the largest
mass in the steady state at time t. M�t� has the average value
M0��M�t��= ��−�c�L, with fluctuations �M0 which scale as
L1/2 for b�3, and as L1/�b−1� for 2�b�3 �18�. These fluc-
tuations may build up in time, and over the time scale Ts, the
largest mass fluctuates to �M0 /2, while a mass �M0 /2 also
builds up at another site. Subsequent to this, two sites with
mass �M0 /2 exchange particles between themselves result-
ing in relatively rapid alternating relocations of the largest
mass from one site to the other. The difference of masses on
these two sites performs an unbiased random walk in time
until fluctuations populate one of the sites to �M0 at the
expense of the other, which happens over the time scale Tr
���−�c�2L2.

Figure 4�a� shows the Monte Carlo results for the survival
probability distribution Ps��� of the largest mass, obtained by
computing the distribution of the time interval between
successive relocations. Ps��� has two parts, �i� a power law
part ��−3/2 and �ii� another part, which corresponds to the
bump in Fig. 4�a�, and has the scaling form ��
−�c�−�b+2�L−�b+1�f�� /Ts�, as shown in Fig. 4�b�. The prefactor

comes from the normalization of Ps��� to unity, with the
cutoff for the �−3/2 part taken to scale as Tr. The power law
part holds for times when the two sites with mass �M0 /2
compete to hold the largest mass. The random walk argu-
ment of the preceding paragraph predicts a �−3/2 decay, since
Ps��� then stands for the probability for the random walker to
cross the origin for the first time. The second part in Ps���
arises from the relatively long time for which the condensate
is stationary on one site.

We now explain the behavior of C�t� / t in the different
regimes seen in Fig. 3�a�. The condensate is stationary on
one site for a long time �1, which is a random interval dis-
tributed as p��1����−�c�−�b+2�L−�b+1�f��1 /Ts�, with the char-
acteristic survival time Ts. In regime �i�, when t�Ts, the
condensate is stationary and acts as a reservoir for fluctua-
tions, preventing their transport around the system as a kine-
matic wave. As a result, Burke’s theorem is valid over this
time scale and the integrated current is Poisson distributed
with intensity vmax=1, implying C�t� / t=1. When t�Ts, the
condensate starts to move from one site to another by trans-
ferring its mass across the intervening bonds. As a result,
these bonds pick up enhanced fluctuations ���M0�2� in the
integrated current over the relocation time interval �2, which
is a random variable with the characteristic time Tr. These
enhanced fluctuations lead to the rise in C�t� / t as a function
of t in regime �ii�. The collapse of the rise times seen in the
scaling plot of Fig. 3�b� confirms this picture. In regime �iii�,
after t�Ts+Tr, the condensate has completed relocating, so
current fluctuations revert to Burke-like behavior, resulting
in the fall of C�t� / t in time. The slow fall in regime �iii�
arises from the wide distribution of the time �2, and further
relocations. To predict the behavior in regime �iv�, where t
�Ts+Tr, we construct below a simple relocation model
�RM� that describes the effect of condensate relocation on
the long-time behavior of current fluctuations.

Figure 5 shows schematically the instantaneous current
j�i , t� across the bond �i , i+1� as a function of time. In a
given history, let K be the number of condensate relocations
in a fixed time t. Here, K is a random variable with mean
given approximately by �K�� t / �DTs+BTr�, where B and D
are constants, independent of the density and the system size.
At the kth relocation of the condensate �k=1,2 , . . . ,K�, let

M̃k denote the amount of mass transferred across the bond
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FIG. 2. �Color online� Monte Carlo �MC� simulation results for
B�t� / t2/3 as a function of time t for different b’s at �c=1 / �b−2�. The
system size is L=16 384. The dashed lines show the asymptotic t2/3

approach.
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FIG. 3. �Color online� �a� Schematic plot of C�t� / t as a function
of time t in the condensed phase. The various regimes �see text� are
also marked. �b� Scaling of C�t� / t with t /Lb for b=3 in the con-
densed phase ��=4�. Various system sizes L considered are marked
in the figure. The data points, obtained from MC simulations, are
connected by smooth curves.

10-12

10-6

1

10-1 103 107
10-5

10-2

10

10-2 10-1 1

64
80
96

112
128

(a) (b)

P
s(

τ
)

L
b+

1 P
s(

τ
)

τ/Lbτ

FIG. 4. �Color online� �a� Survival probability distribution Ps���
of the largest mass in the condensed phase. The system size L
=128, and the parameter b=3, while �=4. The dashed line is a
guide to the eye for the part of Ps��� behaving as �−3/2. �b� Scaling
of the bump in Ps���. The data are obtained from MC simulations.
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�i , i+1� over the interval �2. The random variable M̃k has an
average M0 and variance �M0. The integrated current H�i , t�
is given approximately as H�i , t���k=1

K M̃k+�0
t−KBTrdt�j�i , t��.

For b�3, on computing the variance of the integrated cur-
rent, we get C�t��GL�K�+ �t− �K�BTr�, where G is a con-
stant. On substituting for �K� and neglecting the time scale
Tr���−�c�2L2 in comparison to Ts���−�c�b+1Lb, we obtain
the asymptotic behavior

C�t� � �L−��� − �c�−�b+1� + 1�t , �3�

with �=b−1 for b�3. For b between 2 and 3, we find that
�= �b2−b−2� / �b−1�. Thus, the RM predicts that, for all val-
ues of b, at long times t�Ts+Tr �regime �iv��, C�t� / t ap-
proaches a size-dependent constant which scales down with
the system size. This long-time regime �iv� could not be
accessed in simulations for the system sizes shown in Fig.
3�b�, but we confirmed its existence for smaller systems.

In summary, we addressed the dynamics of steady state
fluctuations of a zero-range process which undergoes a non-
equilibrium phase transition from a disordered to a con-
densed phase. Different dynamical properties emerge in the
two phases. In the disordered phase, fluctuations move
around the system as a kinematic wave. Such a wave, though
present in the bulk, cannot circulate around in the condensed
phase because the condensate subsumes fluctuations. The dy-
namics is governed by the condensate relocation through a
slower process of transfer of particles from site to site, con-
tributing enhanced fluctuations to the particle current across
the intervening bonds.
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FIG. 5. �Color online� Schematic plot of the instantaneous cur-
rent j�i , t� across the bond �i , i+1� at time t as a function of time.
The random variable �1 is the time for which the condensate is
stationary on a site, while the random variable �2 stands for the

relocation time of the condensate. M̃k is the integrated current over
time �2, arising from the kth relocation of the condensate across the
bond �i , i+1�.
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